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Abstract. The ternary system with a light nucleus between two heavy fragments is assumed to appear
from the binary configuration near scission. The formation of a third light nucleus in the binary system
is considered. The calculated charge distributions in spontaneous ternary fission of 252Cf and in induced
ternary fission of 56Ni are compared with the available experimental data. The neutron multiplicity from
the fission fragments is described. The fine structures of the TKE-mass distribution are predicted.

PACS. 25.85.-w Fission reactions – 21.60.Gx Cluster models

1 Introduction

In the last two decades there were many experiments [1–
6] carried out on the spontaneous ternary fission of 252Cf
which is convenient for measurements. Recently, interest-
ing preliminary results on the induced ternary fission of
56Ni were obtained by von Oertzen et al. [7]. The study
of these rare processes is a challenge for the theory and is
important for the understanding of the fission mechanism.
Due to the emission of a light charged particle (LCP) from
the region between the two heavy fragments, the process of
formation of fission fragments near the scission becomes
observable and the nuclear shape at scission can be ex-
plored. Based on the experimental information it has been
suggested in ref. [8] that the ternary fission is a particu-
lar case of binary fission, i.e. the LCP is formed in the
process of binary fission. The microscopic study [9] of the
formation probability of an α-particle in the fissioning nu-
cleus supports the formation of an α-particle between the
heavy fragments in the last stage of the fission process.
The same conclusion follows from the classical and semi-
classical dynamical and statistical treatments [10–13].

In the present paper we will also assume that the
ternary fission is a two-step process. In the first step the
binary system is formed, in the second step the third light
nucleus originates from one or several alpha particles and
neutrons in the region between the two separating heavy
fragments. This mechanism will be supported by our cal-
culations of such characteristics of ternary fission as the
charge distribution, total kinetic energy (TKE) of the fis-
sion fragments, and neutron multiplicity distribution from
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the fission fragments. We will use the statistical approach
based on the potential energies of the ternary systems with
certain LCP. A similar model was used by us in ref. [14]
for the description of binary fission. As shown in ref. [12],
the statistical approach is suitable to describe the relative
yields of various ternary decays.

In sect. 2 the methods of calculation of the potential
energy of the ternary system at scission and the charge
distributions in ternary fission will be described. The po-
tential energies of various ternary systems as functions
of deformations of heavy fragments will be analysed. We
will define the most probable deformations of the frag-
ments at scission. The TKE of fission fragments will be de-
fined as the interaction potential at scission which depends
strongly on the deformations of the fragments. The exci-
tation energies of the fragments after spontaneous ternary
fission and neutron multiplicity from these fragments will
be studied. In sect. 3 the results of our calculations for
252Cf and 58Ni will be discussed.

2 Model

2.1 Potential energy of the ternary system

Considering the ternary fission as a two-step process, we
assume the formation of the LCP between the heavy frag-
ments after the formation of the scission configuration of
the binary system. The treated ternary system at scission
consists of three almost touching coaxial ellipsoids: two
heavy fragments 1 and 2, and the light fragment 3 be-
tween them (see fig. 1). Note that in this system the LCP
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Fig. 1. Scission configuration of the ternary system.

can have the kinetic energy which is the subject of future
dynamical calculations. The main parameters describing
the ternary system are the charges (Zi) and the masses
(Ai) of the fragments, the distances between the centers
of the fragments (d1 and d2), the deformation parame-
ters (βi), and the excitation energy of the whole system
E∗. The deformation parameters βi are defined as the
ratios of the major (ci) and minor (ai) semiaxes of the
ellipsoids βi = ci/ai. The volume conservation is taken
into account. The potential energy of the ternary system
(Z1, A1) + (Z3, A3) + (Z2, A2) is defined as follows:

U({Ai, Zi, βi, di}, E
∗) = ULD

1 (A1, Z1, β1)

+ULD
2 (A2, Z2, β2) + δUsh

1 (A1, Z1, β1, E
∗)

+δUsh
2 (A2, Z2, β2, E

∗) + U3(A3, Z3)

+Vint({Ai, Zi, βi, di}, L) (1)

with

Vint({Ai, Zi, βi, di}, L)=V
C
12(A1, Z1, A2, Z2, β1, β2, d1+d2)

+V N
12 (A1, A2, β1, β2, d1+d2)+V

C
13(A1, Z1, A3, Z3, β1, β3, d1)

+V N
13 (A1, A3, β1, β3, d1)+V C

23(A2, Z2, A3, Z3, β2, β3, d2)

+V N
23 (A2, A3, β2, β3, d2)+V rot({Ai, βi, di}).

The potential energies of the heavy fragments consist of
the liquid-drop energies ULD

i and shell correction δU sh
i

terms which depend on the deformations of the fragments.
The values of ULD

1 and ULD
2 are calculated like in ref. [14]

where the method of calculation of δU sh
i with the two-

center shell model [15] is described as well. Since we con-
sider only a light third fragment up to oxygen, this frag-
ment is stiff and its potential energy U3 was taken at fixed
deformation of the ground state. The interaction poten-
tial Vint contains three Coulomb V C

ij and nuclear V N
ij in-

teractions between the fragments. The calculation of V N
ij

is done in the double-folding procedure with Skyrme-type
density-dependent nucleon-nucleon forces [16,17]. The dif-
fuseness parameters for the Fermi distribution of the nu-
cleon densities are 0.48, 0.52 and 0.55 fm for 4He, 8,10Be
and other nuclei, respectively. The parameters of radii of
4He, 8,10Be and other nuclei are 1.03, 1.12 and 1.15 fm,
respectively. If the compound nucleus is obtained in the
reaction like 32S + 24Mg→ 56Ni and has large angular mo-
mentum, then we take into consideration the rotational
energy term V rot = h̄2L(L+ 1)/(2=) with the rigid-body

Fig. 2. Calculated interaction potentials for the
ternary systems 106Mo + 4He + 142Xe (upper part) and
102Zr + 10Be + 140Xe (middle part) at L = 0, and for
20Ne + 8Be + 28Si (lower part) at L = 0 (solid line) and
L = 35 (dashed line) as a function of the distance between
the heavy fragments, d1 + d2. The condition A1d1 = A2d2 is
used. The deformations of heavy fragments correspond to the
deepest minimum of the potential energy as a function of β1

and β2.

moment of inertia =. For spontaneous ternary fission of
252Cf, we set V rot = 0.

For particular ternary systems with some deforma-
tions, the interaction potential Vint as a function of the
distances d1 and d2 has a potential barrier which results
from the competition between the repulsive Coulomb and
attractive nuclear interactions. In the spontaneous fission
of 252Cf it is about 0.5MeV, in the induced fission of 56Ni
this barrier is more than 10MeV. For the calculation of the
relative yields we should use the values of potential energy
on the barrier at Rb = d1+d2 which depends on the choice
of the relationship between d1 and d2. For the fission of
actinides, this choice weakly influences the results because
the barrier remains small for each ratio between d1 and
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d2. The experiment [7] for induced ternary fission of 56Ni
with third particles 8Be and 12C demonstrates a very nar-
row distribution of the out-of-plane angle between the first
and the second fragments near 180◦, hence, the third par-
ticle has approximately zero velocity in the center-of-mass
coordinate system. Using this fact, we set A1d1 = A2d2 [8,
18] and take for the potential energy calculation the val-
ues of d1 and d2 corresponding to the barrier along this
path. The results for the systems 106Mo+ 4He + 142Xe,
102Zr + 10Be + 140Xe and 20Ne + 8Be + 28Si are presented
in fig. 2. While the ternary systems formed from 252Cf are
unstable with respect to decay, the decay of the ternary
systems formed from 56Ni demands considerable energy.
As one can see, the treated ternary systems can be called
the scission configurations because they either are kept
by small potential barriers or correspond to the minimal
repulsive forces (the Coulomb repulsion is almost compen-
sated by the nuclear attraction). In our opinion this fact
allows us to assume some thermal equilibrium and to use
the statistical treatment.

The intrinsic excitation energy of the scission configu-
ration is related to the Q-value as follows:

E∗({Ai, Zi, βi}, Rb) = Q−
∑

i6=j

(V C
ij + V N

ij )

+δV rot − Edef ({Ai, Zi, βi}) + S, (2)

where Edef is the deformation energy arising from the de-
viation of βi from the values corresponding to the nuclear
ground states; S is the excitation energy of the fissioning
nucleus, and δV rot the change of rotational energy of the
scission configuration with respect to the compound nu-
cleus. In spontaneous fission S = 0 and δV rot = 0. The
dynamics of the ternary fission is not treated here. We
only consider effects which can be explained with the sta-
tistical approach. Therefore, in eq. (2) we assume that the
energy related to the motion and internal excitation of the
LCP in the field of the two heavy fragments at the scis-
sion configuration is equal to zero. We also disregard the
kinetic energy of the heavy fragments at scission.

In order to include the dependence of the shell cor-
rection on the excitation energy E∗, the following phe-
nomenological expression is widely used:

δUsh
i (Ai, Zi, βi, E

∗) =

δUsh
i (Ai, Zi, βi, E

∗ = 0) exp[−E∗
i /ED], (3)

where the excitation energy is divided between the heavy
fragments proportional to their level density parameters
ai, i.e. E∗

i = aiE
∗/(a1 + a2). The damping constant ED

is set as 18.5MeV [19]. We found for the considered ex-
citation energies that our final results are not very sen-
sitive to a reasonable variation of ED within the interval
15–25MeV. The level density is calculated with the pa-
rameter [19]

ai = ãi(Ai)

[

1 +
1− exp{−(E −Ec)/ED}

E − Ec
δUsh

i

]

, (4)

Fig. 3. Potential energy surfaces for the binary sys-
tem 106Mo + 146Ba (upper part) and the ternary system
106Mo + 4He + 142Xe (lower part). The energies are given in
MeV with respect to the ground state of 252Cf. The calcula-
tions are performed with the method and parameters indicated
in refs. [14,15].

where we take the parameter ãi(Ai) proportional to Ai,
and Ec is the energy of condensation which reduces the
ground-state energy of a Fermi gas by 2MeV.

Since the potential energy depends on E∗, the exci-
tation energy is calculated with (2) by using an iteration
procedure. First, U in eq. (1) is defined with E∗ = 0MeV
and a new value of E∗ is found from (2). Then, with this
E∗ we calculate the potential energy U which leads to a
new value of E∗. As we checked, these two steps supply a
nice accuracy in finding E∗.

In the fission of a heavy nucleus the heavy fragments
in a ternary system can be significantly deformed under
the influence of each other. To find the equilibrium de-
formations of the fragments at scission for each mass and
charge splitting, we calculate the potential energy surface
as a function of deformations of the heavy fragments. Due
to the shell effects, there can be one or several shallow min-
ima on the potential energy surface. Within the statistical
approach one can conclude that the ternary system decays
with relatively large probabilities from configurations with
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deformations corresponding to these minima [14]. Anal-
ogously to binary fission, the enhanced yields from the
shallow potential minima can create the fine structure
in the TKE-mass distribution [14]. Since in the ternary
configurations considered the distance between the heavy
fragments is larger than in the binary case, the Coulomb
interaction is smaller and the mutual influence of the frag-
ments is weaker. Hence, the deformations in the deepest
minimum are smaller in ternary systems. Figure 3 demon-
strates the example of the potential energy surface for a
ternary system in comparison with a binary system. If
one of the fragments is a magic nucleus, its deformation
in the minimum weakly deviates from the deformation of
the ground state. For a non-magic fragment, the minimum
corresponds to a quite large deformation of this fragment.

2.2 Ternary fission as a two-step process

Our calculations show that the potential energies of
ternary systems in actinides are about 20MeV smaller
than in binary systems. If we assume a straight formation
of the ternary system which competes with the formation
of the binary system, then the ternary fission would have
a larger yield than the binary fission. Since this contra-
dicts the experimental results, the ternary system is not
straightly formed. The binary system is firstly formed and
then the ternary system is formed from it by extracting
the LCP into the region between the two heavy fragments.
Then this ternary system decays. In this picture the charge
distribution for ternary fission is strongly ruled by the one
for the binary fission. Such relationships between the bi-
nary and ternary charge distributions really exist in the
experiment [2].

There is more compact ternary configuration between
the binary scission configuration (first step of the model)
and the ternary scission configuration (second step).
While in this compact ternary configuration the poten-
tial energy of the LCP is maximal on the symmetry axis
and decreases with the deviation of the LCP in the per-
pendicular direction (in the coordinate ρ), in the ternary
scission configuration the position of the LCP on the sym-
metry axis corresponds to the conditional minimum of the
potential. Due to the drastic change of the potential for
the LCP, the LCP can obtain the valuable kinetic energy
when the system moves from the compact ternary config-
uration to the ternary scission configuration considered.
Indeed, in the compact ternary configuration the LCP is
accelerated in the perpendicular direction (in ρ). The pre-
liminary dynamical calculations result the small, about
2MeV, kinetic energy of the heavy fragments and the ki-
netic energy of the LCP of about 15MeV at the ternary
scission configuration considered. Since the dynamics of
the ternary fission is not treated here, the kinetic ener-
gies of the LCP and heavy fragments at scission are disre-
garded in our calculations. This leads to an overestimation
of E∗ in eq. (2) and, thus, of the width of the charge and
mass distributions.

Since the ternary scission configuration is in the con-
ditional potential minimum in R and in ρ, the application

of the statistical approach is justified. Using the statistical
approach, one can estimate the relative yields of ternary
systems with a given LCP (Z3, A3). First, the relative
probability for the formation of the binary system con-
taining the fragments (Zb

1, A
b
1) and (Zb

2, A
b
2) is calculated

as follows:

Yb(A
b
1, Z

b
1) =

Y 0
b

∫∫

exp(−Ub(A
b
1, Z

b
1, β1, A

b
2, Z

b
2, β2, E

∗)/T )dβ1dβ2, (5)

where Y 0
b is the normalization factor. The sums Ab

1 + Ab
2

and Zb
1 +Zb

2 are equal to the mass and charge numbers of
the fissioning nucleus, respectively. The potential energy
Ub of the binary system for each pair of deformations β1

and β2 is taken in the minimum of the interaction po-
tential at Rm ≈ c1 + c2 + 0.5 fm. Here, T = (E∗/a)1/2

(a = A/12MeV−1) is the temperature corresponding to
E∗ of that binary system which has the minimal potential
energy among the systems considered. Then, from each bi-
nary system several ternary systems with different charge
asymmetries can be formed by extracting one or several
α-particles and several neutrons from one or both frag-
ments. Different variants of the formation of the ternary
system from the binary one are listed in table 1 for 252Cf
and in table 2 for 56Ni. For each binary system and certain
LCP, the relative probabilities for the ternary systems are
calculated as follows:

Yt(Z1, A1, Z3, A3, Z
b
1, A

b
1) = Y 0

t (Z3, A3, Z
b
1, A

b
1)

×

∫∫

exp(−U(A1, Z1, β1, A2, Z2, β2, A3, Z3, E
∗)/T )dβ1dβ2,

(6)

where Y 0
t (Z3, A3, Z

b
1, A

b
1) is the normalization factor and

the potential energies correspond to the barriers at Rb de-
pending on βi. The sums A1 +A2 +A3 and Z1 +Z2 +Z3

are equal to the mass and charge numbers of the fis-
sioning nucleus, respectively. To find the yield of decay
of a certain ternary system formed from a certain bi-
nary system, we multiply the corresponding probabilities:
Yb(Z

b
1, A

b
1)Yt(Z1, A1, Z3, A3, Z

b
1, A

b
1). Finally, we sum the

yields for the systems with the same charge asymmetries
and the same LCP and obtain the primary charge distri-
bution:

Y (Z1, Z3, A3) =
∑

Zb

1
,Ab

1
,A1

Yb(Z
b
1, A

b
1)Yt(Z1, A1, Z3, Z

b
1, A

b
1). (7)

It is clear from the method used that the obtained charge
distribution Y is normalized to unity. In order to simplify
the calculations, for each set (Z1, Z

b
1, A

b
1) in eq. (7) we take

the most probable A1. Using the idea that the ternary
system is formed in the second step after the formation of
the binary system, the relative yields of various ternary
systems with the same LCP will be calculated.
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Table 1. Calculated relative probabilities for the formation of ternary systems from the indicated binary systems in the 4He-
and 10Be-accompanied spontaneous ternary fission of 252Cf. The sum of all presented values of Yb is equal to unity. For each
binary system, the sum of Yt is normalized to unity.

Binary system Yb Ternary system Yt YbYt Ternary system Yt YbYt

92Kr + 4He + 156Nd 0.22 0.0055 86Se + 10Be + 156Nd 0.04 0.001
96Sr + 156Nd 0.025 96Sr + 4He + 152Ce 0.78 0.0195 92Kr + 10Be + 150Ce 0.36 0.009

96Sr + 10Be + 146Ba 0.6 0.015
94Kr + 4He + 154Nd 0.13 0.005 88Se + 10Be + 154Nd 0.03 0.0012

98Sr + 154Nd 0.04 98Sr + 4He + 150Ce 0.87 0.035 92Kr + 10Be + 150Ce 0.27 0.011
98Sr + 10Be + 144Ba 0.7 0.028

96Kr + 4He + 152Nd 0.04 0.0004 90Se + 10Be + 152Nd 0.02 0.0002
100Sr + 152Nd 0.01 100Sr + 4He + 148Ce 0.96 0.0096 94Kr + 10Be + 148Ce 0.25 0.0025

100Sr + 10Be + 142Ba 0.73 0.0073
96Sr + 4He + 152Ce 0.56 0.013 90Kr + 10Be + 152Ce 0.05 0.0012

100Zr + 152Ce 0.023 100Zr + 4He + 148Ba 0.44 0.01 96Sr + 10Be + 146Ba 0.36 0.0083
100Zr + 10Be + 142Xe 0.59 0.014

98Sr + 4He + 150Ce 0.36 0.04 92Kr + 10Be + 150Ce 0.09 0.01
102Zr + 150Ce 0.11 102Zr + 4He + 146Ba 0.64 0.07 98Sr + 10Be + 144Ba 0.22 0.024

102Zr + 10Be + 140Xe 0.69 0.076
100Sr + 4He + 148Ce 0.21 0.01 94Kr + 10Be + 148Ce 0.04 0.002

104Zr + 148Ce 0.05 104Zr + 4He + 144Ba 0.79 0.04 98Sr + 10Be + 144Ba 0.37 0.018
104Zr + 10Be + 138Xe 0.59 0.03

100Zr + 4He + 148Ba 0.56 0.0095 94Sr + 10Be + 148Ba 0.07 0.0012
104Mo + 148Ba 0.017 104Mo + 4He + 144Xe 0.44 0.0075 100Zr + 10Be + 142Xe 0.6 0.01

104Mo + 10Be + 138Te 0.33 0.0056
102Zr + 4He + 146Ba 0.41 0.08 96Sr + 10Be + 146Ba 0.1 0.02

106Mo + 146Ba 0.2 106Mo + 4He + 142Xe 0.59 0.12 102Zr + 10Be + 140Xe 0.48 0.096
106Mo + 10Be + 136Te 0.42 0.084

104Zr + 4He + 144Ba 0.4 0.068 98Sr + 10Be + 144Ba 0.11 0.019
108Mo + 144Ba 0.17 108Mo + 4He + 140Xe 0.6 0.102 102Zr + 10Be + 140Xe 0.35 0.06

108Mo + 10Be + 134Te 0.54 0.09
104Zr + 4He + 144Ba 0.2 0.01 100Sr + 10Be + 142Ba 0.08 0.004

110Mo + 142Ba 0.05 108Mo + 4He + 140Xe 0.8 0.04 104Zr + 10Be + 138Xe 0.36 0.018
110Mo + 10Be + 132Te 0.56 0.028

106Mo + 4He + 142Xe 0.73 0.031 100Zr + 10Be + 142Xe 0.21 0.009
110Ru + 142Xe 0.043 110Ru + 4He + 138Te 0.27 0.012 106Mo + 10Be + 136Te 0.53 0.023

110Ru + 10Be + 132Sn 0.26 0.011
108Mo + 4He + 140Xe 0.31 0.043 102Zr + 10Be + 140Xe 0.26 0.036

112Ru + 140Xe 0.14 112Ru + 4He + 136Te 0.69 0.097 108Mo + 10Be + 134Te 0.4 0.056
112Ru + 10Be + 130Sn 0.34 0.048

110Mo + 4He + 138Xe 0.35 0.019 104Zr + 10Be + 138Xe 0.17 0.009
114Ru + 138Xe 0.055 114Ru + 4He + 134Te 0.65 0.036 108Mo + 10Be + 134Te 0.48 0.026

114Ru + 10Be + 128Sn 0.35 0.019
112Ru + 4He + 136Te 0.91 0.0091 106Mo + 10Be + 136Te 0.27 0.0027

116Pd + 136Te 0.01 116Pd + 4He + 132Sn 0.09 0.0009 112Ru + 10Be + 130Sn 0.4 0.004
116Pd + 10Be + 126Cd 0.33 0.0033

114Ru + 4He + 134Te 0.57 0.0154 108Mo + 10Be + 134Te 0.3 0.008
118Pd + 134Te 0.027 118Pd + 4He + 130Sn 0.43 0.0116 112Ru + 10Be + 130Sn 0.26 0.007

118Pd + 10Be + 124Cd 0.44 0.012
116Ru + 4He + 132Te 0.47 0.014 110Mo + 10Be + 132Te 0.24 0.0072

120Pd + 132Te 0.03 120Pd + 4He + 128Sn 0.53 0.016 114Ru + 10Be + 128Sn 0.32 0.0096
120Pd + 10Be + 122Cd 0.44 0.013
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Table 2. Calculated relative probabilities for the formation of ternary systems from the indicated binary systems in the 8Be-
accompanied ternary fission of 56Ni. The sum of all presented values of Yb is equal to unity. For each binary system, the sum of
Yt is normalized to unity.

Binary system Yb Ternary system Yt YbYt

20Ne + 36Ar 0.19 16O+ 8Be + 32S 0.64 0.122
20Ne + 8Be + 28Si 0.36 0.068

22Na + 34Cl 0.02 18F + 8Be + 30P 0.68 0.0136
22Na + 8Be + 26Al 0.32 0.0064
16O+ 8Be + 32S 0.5 0.125

24Mg + 32S 0.25 20Ne + 8Be + 28Si 0.28 0.07
24Mg + 8Be + 24Mg 0.22 0.055

26Al + 30P 0.03 18F + 8Be + 30P 0.68 0.02
26Mg + 8Be + 22Na 0.32 0.01

28Si + 28Si 0.51 20Ne + 8Be + 28Si 0.57 0.29
24Mg + 8Be + 24Mg 0.43 0.22

2.3 Relative yields of different LCP

It is also interesting to calculate the ratios of the yields
of different LCP. The analysis of potential energy surfaces
at scission does not provide this information. The relative
yields of ternary fission with various LCP are determined
by the formation probability S of LCP and the probability
of ternary decay (the LCP can be absorbed by one of the
fragments that leads to binary decay). To calculate the
formation probability of LCP, we find the spectroscopic
factors for different LCP within our cluster approach [20].
The spectroscopic factor is the weight of a certain binary
cluster configuration in the wave function of the nucleus.

In the cluster model, the charge (mass) asymmetry co-
ordinate ηZ = (Zd−Zx)/(Zd+Zx) (η = (Ad−Ax)/(Ad+
Ax)), which describes a partition of protons (nucleons)
between the nuclei of the dinuclear system formed by two
touching nuclei or clusters, is used as relevant collective
variable. Here, Zd (Ad) and Zx (Ax) are the charge (mass)
numbers of the heavy and light nuclei of the dinuclear sys-
tem, respectively. In the dynamical treatment η (ηZ) is as-
sumed as a continuous variable [20]. The wave function in
ηZ can be thought as a superposition of the mononucleus
configuration with |ηZ | = |η| = 1 and different cluster-
type configurations including the most probable alpha-
cluster configuration with |ηZ | = 1−4/(Zd+Zx) (Zx = 2).
The relative weight of each cluster component in the to-
tal wave function is determined by solving the stationary
Schrödinger equation
[

−
h̄2

2

d

dηZ
B−1
ηZ

d

dηZ
+ Udr(ηZ)

]

Ψi(ηZ) = EiΨi(ηZ), (8)

where B−1
ηZ

and Udr(ηZ) are the inverse inertia coefficient
and potential energy (driving potential) of the collective
Hamiltonian in ηZ , respectively. A method of calculation
of B−1

ηZ
is described in ref. [20]. The potential Udr(ηZ) of

cluster systems (|ηZ | < 1) is taken as

Udr(ηZ) = V (Rm, ηZ)−Bd(ηZ)−Bx(ηZ) +B,

V (Rm, ηZ) = V C(Rm, ηZ) + V N (Rm, ηZ). (9)

The quantities Bd and Bx are the experimental binding
energies of the clusters forming the dinuclear system at
a given ηZ , and B is the experimental binding energy of
the mother nucleus. These values are taken from ref. [21].
Due to the normalization by B in eq. (9), Ei=0 = 0 for
the ground state. The nucleus-nucleus potential V is the
sum of the nuclear V N and the Coulomb V C ones. Here,
the nuclear rotation is not treated. The dinuclear system
is localized in the minimum of the pocket of the nucleus-
nucleus interaction potential V at the relative distance
R = Rm corresponding to the touching configuration. The
deformations of the heavy cluster are taken from refs. [22,
23]. The pole-to-pole orientation of the deformed nuclei in
the dinuclear system gives the minimum of the potential
energy. Since the mode responsible for the N/Z equilib-
rium in the dinuclear system is quite fast, the potential en-
ergy Udr is minimized with respect to η for each ηZ . The
expression (9) cannot be used to calculate the potential
energy of a mononucleus. With calculated B−1

ηZ
the value

of Udr(|ηZ | = |η| = 1) was chosen so to have Ei=0 = 0 for
the ground state.

Taking into consideration that the population prob-
ability of the state Ψi(ηZ , I) in ηZ is proportional to
exp(−Ei/T ), the spectroscopic factor Sx of a cluster with
Zx is calculated as follows:

Sx =
∑

i

exp

(

−
Ei

T

)

×

ηZ(Zx)+1/Z
∫

ηZ(Zx)−1/Z

|Ψi(ηZ , I)|
2dηZ/

∑

i

exp

(

−
Ei

T

)

. (10)

Here, 0.5|ηZ(Zx)− ηZ(Zx ± 1)| = 1/Z is the half-distance
in units of ηZ between the dinuclear configurations with
Zx and Zx ± 1. In this approach the collective motion
in the mass asymmetry coordinate simultaneously cre-
ates a deformation with even and odd multipolarities.
So, the clusterization is strongly related to the excita-
tion of quadrupole and octupole vibrations. Therefore,
the cluster formation would increase with excitation en-
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Fig. 4. Spectroscopic factors for 4He (solid line), 10Be (dashed
line) and 14C (dotted line) as functions of excitation energy in
the nuclei 106Mo (upper part) and 146Ba (lower part).

ergy. For zero excitation, eq. (10) is transformed into

Sx =
ηZ(Zx)+1/Z

∫

ηZ(Zx)−1/Z

|Ψ0(ηZ)|
2dηZ and leads to the values con-

sistent with the results of ref. [24].

We calculate the spectroscopic factors Sx for differ-
ent nuclei from Sr to Nd [25]. The spectroscopic factors
for 4He, 10Be and 14C in 106Mo and 146Ba are shown in
fig. 4 as functions of excitation energy. The excitation en-
ergies of the fragments in binary systems formed from
252Cf are about 10–15MeV. In this case the spectroscopic
factors for 4He S(4He) = S4He = 5 × 10−2 are found to
be close to each other for all fragments considered. The
spectroscopic factors for 10Be for all these nuclei are at
least two orders of magnitude smaller than the product
S(10Be) = S4He×S4He = 2.5× 10−3. This means that the
LCP 10Be can be formed consequently by two α-particles
and two neutrons between two heavy fragments. Since the
formation of 4He in the region between the heavy frag-
ments is preferable, this region is marked out and one can
assume that two sequentially formed 4He are correlated
to form 10Be. The α-particles can be extracted from one
or both fragments of the binary system. Two neutrons are
easily absorbed by 8Be because the configurations with
10Be correspond to smaller potential energies. Then, we
can suppose that the neutrons do not change the proba-
bility of formation. Analogously, the formation probabil-
ities of 14C and 20O as LCP are S(14C) = (S4He)

3 and
S(20O) = (S4He)

4, respectively.

Table 3. Correlation of the formation probabilities S and ex-
perimental relative yields Yexp [1] of different LCP. The values
of S and Yexp are given with respect to those for 4He.

LCP Yexp/Yexp(
4He) S/S4He

4He 1 1
7Li 5× 10−3 4.2× 10−3

10Be 1.3× 10−2 5× 10−2

11B 6× 10−4 2.1× 10−4

14C 5× 10−3 2.5× 10−3

20O 1.3× 10−4

In order to treat the formation of 7Li and 11B with
probabilities S(7Li) = S4He×S3H and S(11B) = (S4He)

2×
S3H, respectively, we should estimate S3H. Since our clus-
ter model is one dimensional in ηZ (at average η), we
cannot calculate with it the fluctuations in mass asymme-
try and, thus, S3H. For this purpose, we use the statistical
approach with the Boltzmann-type formula. The poten-
tial energy of the dinuclear system 4He + 142Xe is about
3MeV smaller than the potential energy of the configura-
tion 3H+ 143Cs. Therefore, we obtain S3H = 4.2 × 10−3

at the considered excitation energy. The use of the statis-
tical treatment is justified. For example, the formation of
6He needs also more energy than the formation of 4He and
the calculated formation probability of 6He from 146Ba is
about 31 times smaller than the formation probability of
4He if the statistical approach is used, while the experi-
ments [1] give us 27 times difference.

Since the calculated probabilities S(A3Z3) of formation
of LCP A3Z3 are well correlated with the experimental
data on the relative yields of ternary fission (table 3), one
can conclude that the probability of ternary decay weakly
depends on the kind of LCP. Thus, the ratios of the yields
of different LCP are ruled by the formation probabilities
S of these LCP. With the suggested mechanism of the
formation of the LCP one can explain the observed weak
dependence of the LCP formation probability S on the ex-
citation energy of the fissioning nucleus [12,8]. While S4He

weakly depends on E∗ at E∗ > 8MeV, the spectroscopic
factors S10Be and S14C show a visible dependence on the
excitation (fig. 4). Therefore, the sequential formation of
the LCP from the correlated 4He in the region between
two heavy fragments looks realistically.

2.4 Neutron multiplicity distribution in binary and
ternary fission

The system at scission has the intrinsic excitation energy
E∗ which can be calculated with eq. (2). In the case of bi-
nary fission this energy is assumed to be divided between
the fragments proportional to their level densities. Since
the fragments are deformed at scission, the relaxation of
the deformations to the ground-state deformations takes

place after the decay and the energies Edef
i of deforma-

tions are transformed into the fragment intrinsic excita-
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tion energies E∗
i :

E∗
i = E∗ ai

a1 + a2
+ Edef

i , (11)

where a1 and a2 are the level density parameters of the
nuclei.

For ternary systems, the excitation energy of the LCP
is assumed to be small. To overcome the Coulomb barrier,
in the considered scission configurations the LCP obtains
the energy ELCP . Therefore, the intrinsic excitation en-
ergy of the primary fragment (i = 1 or 2) of the ternary
fission is

E∗
i = (E∗ − ELCP )

ai
a1 + a2

+ Edef
i . (12)

Here, we use eq. (2) to calculate E∗. In comparison with
the binary fission, the excitation energies of the fragments
in the ternary fission is reduced by ELCPai/(a1 +a2) and

smaller Edef
i . However, E∗ can be larger in ternary fission

than in the binary one, like in 252Cf, and the difference of
E∗
i in binary and ternary fission can be relatively small.
Due to the excitation energy, the fission fragment can

evaporate several neutrons after fission. To calculate the
neutron multiplicity distribution, we use the following ex-
pression:

〈νi〉 =
E∗
i

Bni
+ 2Ti

, (13)

where Bni
is the energy of separation of the neutron and

Ti is the temperature of the fragment, Ti = (E∗
i /ai)

1/2.
For small excitation energies, we take Bni

as the separa-
tion energy of the first neutron. In the case of high excita-
tions we take Bni

as the average over the first and second
neutrons. The term 2Ti is included to describe the kinetic
energy of the evaporated neutron [26].

3 Results and discussions

3.1 Spontaneous ternary fission of 252Cf

3.1.1 Fine structure of TKE-mass distribution

There are several minima of the potential energy of the
system as a function of β1 and β2 for fixed A1 and A2. If
we consider the potential energy of the system at scission
as a function of A1, β1 and β2, the potential energy sur-
face depends on three coordinates. The deformations β1

and β2 of the fragments at the minima have almost the
same values for neighboring A1. Therefore, in the three-
dimensional space (β1, β2, A1) the minima of the potential
energy with respect to β1 and β2 are situated along several
lines almost perpendicular to the plane (β1, β2). Since the
deformations corresponding to minima are energetically
preferable, the yields are enhanced for the deformations
corresponding to these lines. These enhanced yields are
along lines on the TKE-mass distribution which produce
fine structures in the TKE-mass distribution. Since the
considered potential minima are quite shallow, the pro-
duced structures are called fine structures like in the case

Fig. 5. Predicted fine structure of the TKE-mass distribution
for the spontaneous ternary 4He-accompanied fission of 252Cf.
The experimental dependence of the mean TKE on A1 is taken
from ref. [28] and presented by the dashed line.

of binary fission [27]. In our approach we define the TKE
of fragments as Vint at scission. Since the kinetic energy
of the LCP of about 15MeV at the scission configuration
considered, Vint almost coincides with the TKE of heavy
fragments. In addition, the interaction of the LCP with
heavy fragments at scission is quite small because of the
mutual compensation of the Coulomb and nuclear forces.

For the binary fission, the calculated structures [14]
correlate well with the experimentally found fine struc-
tures [27]. These fine structures are different from those
produced by the odd-even effect. Indeed, the method for
analyzing the fine structure in the experimental data is
based on the specific subtraction of a smooth distribu-
tion from the measured one [27]. In comparison to the bi-
nary fission, the values of β1 and β2 in the minima of the
ternary systems are smaller and the number of the min-
ima is in general smaller as well. Therefore, the calculated
fine structure in fig. 5 for the α-accompanied spontaneous
ternary fission of 252Cf is poor and consists only of three
lines connecting the points corresponding to the potential
minima with respect to β1 and β2. For A1 = 106, there are
three potential minima (fig. 3) corresponding to different
values of β2 at fixed β1. For A1 < 106, there are only two
potential minima. For A1 > 106, the potential energy as a
function of β1 and β2 has only one minimum. The upper
line in fig. 5 corresponds to the deepest potential min-
ima. For A1 = 106, the energy at the minimum related
to this line is 0.2MeV (1MeV) smaller than the energy
at the minimum related to the middle (lowest) line. The
dashed line in fig. 5 shows the experimental dependence
of the average TKE of heavy fragments on A1 taken from
ref. [28]. This dashed line is closed to the upper solid line
for A1 ≥ 106. The products with A1 ≤ 102 have the max-
imal yields at TKE corresponding to the middle line. The
fine structure indicated by the lowest solid line in fig. 5
is out of the region of the maximal yields of the fission
fragments and can be tried to be found in the experimen-
tal data if the fissioning ternary system reaches so large
deformations. There are also fine structures in the TKE-
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Fig. 6. Charge distributions in the spontaneous ternary fis-
sion of 252Cf with different indicated LCP. The calculated and
experimental points are shown by open and closed circles, re-
spectively, connected by straight lines.

mass distribution in the case of ternary fission of 252Cf
with other LCP. This phenomenon can be observed in the
spontaneous and induced ternary fission of actinides and
transactinides.

3.1.2 Charge distributions

Let us consider ternary systems formed from the binary
ones listed in table 1. The charge distributions related
to heavy fragments are calculated with eqs. (5)–(7). The
results of our calculations for 252Cf in comparison with
the experimental data are shown in fig. 6. Since the bi-
nary system Mo + Ba has the largest yield and the po-
tential energy of the ternary system Mo + 4He + Xe is
smaller than for Zr + 4He + Ba, the ternary charge dis-
tribution with the LCP 4He has a maximum at Mo.
This is in agreement with the data of ref. [29], where
Y (Mo + 4He + Xe)/Y (Zr + 4He + Ba) = 1.6. However, in
the recent processing of the experimental data [2] 4He
seems to be extracted with a larger preference from the
light fragment and the distribution has a maximum at Zr.
The width of the distribution seems to be well reproduced
in our calculations.

For the LCP 10Be, the maxima of the experimental and
calculated distributions coincide. It should be mentioned
that the distribution has a larger width than in the case
of 4He. For the 14C accompanied ternary fission, again
we have a coincidence of the calculated and experimental
maxima, but the calculated yield at Z1 = 36 is smaller
than in the experiment. The width of the distribution is
larger than in the case of 10Be-accompanied ternary fis-
sion. In fig. 6 we also predict the charge distribution for

Fig. 7. Neutron multiplicity from individual fragments in the
spontaneous binary fission of 252Cf as a function of the frag-
ment mass. The experimental data [1] and calculated results
are presented by closed and open circles, respectively.

ternary fission with the LCP 20O. The tendency of the in-
crease of the width of charge distribution with the charge
of LCP can be easily explained. If the LCP is heavier and
consists of several α-particles, then from one binary sys-
tem one can construct more ternary systems with different
charge asymmetries.

3.1.3 Neutron multiplicity distribution from each heavy
fragment

As a first step, we treat the neutron emission in the binary
fission. The calculated neutron multiplicity from individ-
ual fragments in the binary fission of 252Cf is compared
with the experimental data in fig. 7. Since the mean ki-
netic energies of the fission fragments are well described
with the approach presented [14], the calculated excitation
energies of the fragments as well as the neutron multiplic-
ities are in good agreement with the experiment [1].

In α-accompanied ternary fission, the TKE of the
heavy fragments, which is equal to the interaction energy
Vint at scission, is in good agreement with the experimen-
tal values in fig. 5. The α-particle obtains a kinetic energy
ELCP of about 16MeV [1] to overcome the Coulomb bar-
rier. The calculated neutron multiplicity from the individ-
ual fragments in the spontaneous α-accompanied ternary
fission of 252Cf is compared with the experiment [1] in
fig. 8. The presented result of calculations with E∗

1 and
E∗

2 (see eq. (10)) has not so good agreement with the ex-
periment as with E∗

1 → E∗
1−2MeV and E∗

2 → E∗
2+2MeV

but is still satisfactory.
For the 10Be-accompanied fission, the mean kinetic en-

ergy of 10Be is about 18MeV [1,2,30]. However, the neu-
tron multiplicities were measured in ref. [1] with the low-
energy cut-off for 10Be which was 26MeV. Note that for
4He the cut-off is smaller than the mean kinetic energy
of 4He. Therefore, for comparison with the data [1] we
take ELCP = 26MeV and deal with the data on neutron
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Fig. 8. Neutron multiplicity from the individual fragments in
the 4He-accompanied spontaneous ternary fission of 252Cf as a
function of the fragment mass. The experimental data [1] are
shown by closed circles. The results calculated with excitation
energies E∗

1 and E∗

2 from eq. (10), and with E∗

1 → E∗

1 −2MeV
and E∗

2 → E∗

2 + 2MeV are presented by open triangles and
circles, respectively.

Fig. 9. Neutron multiplicity from the individual fragments in
the 10Be-accompanied spontaneous ternary fission of 252Cf as
a function of the fragment mass. The experimental data [1] and
calculated results with E∗

i (i = 1, 2) from eq. (10) are presented
by closed and open circles, respectively.

multiplicity only for a part of the 10Be-accompanied fis-
sion. We use E∗

i (i = 1, 2) from eq. (10) in calculations.
The comparison of our calculations with the experiment
is presented in fig. 9. As in binary fission, the dependence
of ν(A1) in ternary fission looks like a “sawtooth” curve.
For 4He and 10Be as the LCP, the values of ν(A1) are
almost the same in the vicinity of A1 = 132, indicat-
ing the importance of the shell structure at Z = 50 and
N = 82. Our model also predicts the same “sawtooth”
curves for the heavier LCP. Quite a good description of
neutron multiplicities comes from the possibility of our
approach to determine the excitation energies of the fis-
sion fragments, as well as their kinetic energy. Indeed, in

Fig. 10. The calculated (open symbols) and preliminary ex-
perimental (closed symbols) [7] charge distributions in the in-
duced ternary fission of 56Ni with the middle particle 8Be (cir-
cles) and 12C (triangles).

the scission of the ternary system 102Zr + 10Be + 140Xe we
find Vint = 160MeV which is in a good agreement with
the experimental TKE [1].

3.2 Induced ternary fission of 56Ni

In comparison with 252Cf, 56Ni produced in the reaction
32S + 24Mg [7] has a large angular momentum up to ∼ 45h̄
and an excitation energy of about 84MeV. The deforma-
tions of the fragments produced from 56Ni do not prac-
tically deviate from their values in the ground states due
to the small values of the Coulomb interaction and large
stiffness of the light nuclei. Hence the variation in defor-
mation is not necessary and the calculations are performed
for the experimental ground-state deformations. There is
one peculiarity related to the 12C nucleus as the third par-
ticle. The ternary coaxial system with an oblate 12C in the
middle is very compact and energetically preferable in the
minimum of the interaction potential due to the nuclear
part of the interaction, but the barrier for the decay of this
configuration is very high. If the 12C fragment in the mid-
dle is turned by an angle of 90◦ around the axis which is
perpendicular to the line connecting the centers of heavy
fragments, the moment of inertia of the ternary system in-
creases and the energy at the barrier decreases by about
4MeV at L = 35. The decay of the ternary systems with
smaller barriers seems to be preferable. The charge distri-
butions for the fission of 56Ni are calculated in the same
way like for 252Cf by using eq. (7). In 56Ni we deal with
α-particle excited nuclei where S4He seems to be close to
unity. For 56Ni, the potential energies of the ternary sys-
tems at the barriers are larger than the potential energies
of the binary systems at the barriers. With increasing an-
gular momentum this difference decreases. However, at
L = 35 it is still 6–8MeV that is in agreement with the
calculations presented in ref. [3]. Thus, the formation of
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a ternary system from the binary one in 56Ni needs the
energy taken from the internal excitation energy.

Figure 10 demonstrates a good agreement of the charge
distributions with the available preliminary data [7] for
the ternary fission of 56Ni accompanied by 8Be and 12C
as the third particles. The calculations are performed at
L = 35 because the higher partial waves mostly contribute
to the cross-section. The structures of the charge distri-
butions are well reproduced. The difference of the poten-
tial energies of the ternary systems with 8Be and 12C at
the barriers weakly depends on L and is within 1–2MeV.
Therefore, the yields of ternary decays with 8Be and 12C
are close to each other. One cannot compare the charge
distribution for ternary fission with 4He as the third par-
ticle with the experiment because the binary fission with
sequential evaporation of 4He from one of the excited frag-
ments cannot be distinguished from the ternary fission
events.

4 Summary

We developed the model of ternary fission based on po-
tential energy calculations of ternary systems at scission
and on statistical analysis. The used cluster description
of scission configurations is convenient to include a varia-
tion of the fragment deformations, and allows us also to
vary the charges and masses of the fragments separately
and to consider all possible scission configurations. The
excitation energy of the fissioning system at scission is
consistently calculated in our model as well as the kinetic
energy of the fragments after fission. The formation of the
ternary system was considered as the second step after
the formation of the binary system by means of extract-
ing one or several α-particles and neutrons from one or
both binary fragments in the region of their interaction.

Using the model developed, we described the charge
distributions for the fission of the heavy nucleus 252Cf
and the light nucleus 56Ni accompanied by various LCP.
The relative yields of different LCP and mean TKE of
fragments are calculated for the fission of 252Cf and are
in good agreement with the experimental results. Based
on the calculations of the excitation energy at scission we
obtained a good agreement with the experimental data
on neutron multiplicity distributions for the binary and
ternary fission of 252Cf. The success in the description of
the ternary fission of both heavy and light nuclei allows
us to conclude on the validity of our approach which can
be improved by including dynamical effects in the future.
The future experimental observations of the predicted fine
structures of the TKE-mass distribution, analogously to
those observed in the binary fission, and the charge dis-
tribution for the 20O-accompanied ternary fission will ad-
ditionally justify our approach.
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